Cognitive decline due to excess synaptic Zn2+ signaling in the hippocampus
نویسندگان
چکیده
Zinc is an essential component of physiological brain function. Vesicular zinc is released from glutamatergic (zincergic) neuron terminals and serves as a signal factor (Zn(2) (+) signal) in both the intracellular (cytosol) compartment and the extracellular compartment. Synaptic Zn(2) (+) signaling is dynamically linked to neurotransmission and is involved in processes of synaptic plasticity such as long-term potentiation and cognitive activity. On the other hand, the activity of the hypothalamic-pituitary-adrenal (HPA) axis, i.e., glucocorticoid secretion, which can potentiate glutamatergic neuron activity, is linked to cognitive function. HPA axis activity modifies synaptic Zn(2) (+) dynamics at zincergic synapses. An increase in HPA axis activity, which occurs after exposure to stress, may induce excess intracellular Zn(2) (+) signaling in the hippocampus, followed by hippocampus-dependent memory deficit. Excessive excitation of zincergic neurons in the hippocampus can contribute to cognitive decline under stressful and/or pathological conditions. This paper provides an overview of the ``Hypothesis and Theory'' of Zn(2) (+)-mediated modification of cognitive activity.
منابع مشابه
The Impact of Synaptic Zn2+ Dynamics on Cognition and Its Decline
The basal levels of extracellular Zn2+ are in the range of low nanomolar concentrations and less attention has been paid to Zn2+, compared to Ca2+, for synaptic activity. However, extracellular Zn2+ is necessary for synaptic activity. The basal levels of extracellular zinc are age-dependently increased in the rat hippocampus, implying that the basal levels of extracellular Zn2+ are also increas...
متن کاملKisspeptin-13 Improves Spatial Memory Consolidation and Retrieval against Amyloid-β Pathology
It has been shown that brain glucose metabolism impairment, obesity, and diabetes couldlead to cognitive decline and Alzheimer’s disease (AD) pathogenesis. Kisspeptin (KP) a G-proteincoupled receptor neuropeptide, has been suggested as a link between energy balance andreproduction. Some studies have shown that the attenuation of KP signaling decreases metabolismand energ...
متن کاملKisspeptin-13 Improves Spatial Memory Consolidation and Retrieval against Amyloid-β Pathology
It has been shown that brain glucose metabolism impairment, obesity, and diabetes couldlead to cognitive decline and Alzheimer’s disease (AD) pathogenesis. Kisspeptin (KP) a G-proteincoupled receptor neuropeptide, has been suggested as a link between energy balance andreproduction. Some studies have shown that the attenuation of KP signaling decreases metabolismand energ...
متن کاملEffect of forced treadmill exercise on long-term potentiation (LTP) in the dentate gyrus of hippocampus in male rats
Introduction: Previous studies indicate that exercise influences cognitive function. Nevertheless, considering that exercise in animal study can be voluntary, or forced, effects of exercise (specially forced exercise) on learning and memory abides as a matter of controversy. The present study aimed to investigate the effects of treadmill exercise on LTP in the dentate gyrus of rats. Methods: T...
متن کاملP18: Signaling Pathway in Long-Term Potentiation
Synaptic plasticity in the central nervous system (CNS) of mammals has been discussed for many years. Several forms of synaptic plasticity of mammal’s CNS have been identified, such as those that occur in long-term potentiation (LTP). Different types of LTP have been observed in distinctive areas of the CNS of mammals. The hippocampus is one of the most important areas in the CNS that pla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2014